Realigning Thunder and Lightning: Temporal Adaptation to Spatiotemporally Distant Events
نویسندگان
چکیده
The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants' SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).
منابع مشابه
Infrasound from lightning measured in Ivory Coast
Previous measurement campaign, realized in France in 2005, has shown that an infrasound station can clearly measure thunder when lightning occur within 75 km from the station. In this paper, infrasound data recorded in Ivory Coast since 2005 are analyzed and compared to WWLLN data in order to quantify statistically the main trends observed in 2005. The main results are : (1) the (infrasonic) th...
متن کاملSpatial Analysis of thunder storm in Iran
Thunderstorms are major climatic events due to the significant effects and catastrophic consequences on humans and the natural environment. The researches have shown that the elevation and latitude factors are two variables that can affect the occurrence of this phenomenon. Therefore, the main aim of this study is to investigate the spatial analysis of the effects of lightning and its effects o...
متن کاملLake-Effect Snowstorms in Northern Utah and Western New York with and without Lightning
Lake-effect snowstorms in northern Utah and western New York with and without lightning/thunder are examined. Lake-effect snowstorms with lightning have significantly higher temperatures and dewpoints in the lower troposphere and significantly lower lifted indices than lake-effect snowstorms without lightning. In contrast, there is little difference in dewpoint depressions between events with a...
متن کاملEvidence for solar wind modulation of lightning
The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival...
متن کاملMapping Thunder Sources by Inverting Acoustic and Electromagnetic Observations
We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is conside...
متن کامل